A Stochastic Finite-element Method for Transformed Normal Random Parameter Fields
نویسنده
چکیده
Transformed normal random fields are convenient models, e.g., for random material property fields obtained from microstructure analysis. In the context of the stochastic finite-element (FE) method, discretization of non-normal random fields by polynomial chaos expansions has been frequently employed. This introduces a non-linear relationship between the system matrix and normal random variables. For transformed normal random fields, the truncated Karhunen-Loève expansion of the transformed field is introduced into the stochastic FE formulation. This leads to a linear dependence of the system matrix on non-normal random variables. These non-normal random variables are then utilized to represent the discretized solution of the stochastic boundary value problem. Introduction of the approximations into the variational formulation of the stochastic boundary value problem and application of a collocation scheme yields a nonintrusive algorithm that allows coupling of reliability estimation procedures and existing FE solvers.
منابع مشابه
Micromechanically based stochastic finite elements
A stochastic finite element method for analysis of effects of spatial variability of material properties is developed with the help of a micromechanics approach. The method is illustrated by evaluating the first and second moments of the global response of a membrane with microstructure of a spatially random inclusionmatrix composite under a deterministic uniformly distributed load. It is shown...
متن کاملSolving log-transformed random diffusion problems by stochastic Galerkin mixed finite element methods
Stochastic Galerkin finite element discretisations of PDEs with stochastically nonlinear coefficients lead to linear systems of equations with block dense matrices. In contrast, stochastic Galerkin finite element discretisations of PDEs with stochastically linear coefficients lead to linear systems of equations with block sparse matrices which are cheaper to manipulate and precondition in the f...
متن کاملA stochastic approach to nonlinear unconfined flow subject to multiple random fields
In this study, the KLME approach, a momentequation approach based on the Karhunen–Loeve decomposition developed by Zhang and Lu (Comput Phys 194(2):773–794, 2004), is applied to unconfined flow with multiple random inputs. The log-transformed hydraulic conductivity F, the recharge R, the Dirichlet boundary condition H, and the Neumann boundary condition Q are assumed to be Gaussian random field...
متن کاملFinite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods
We consider a finite element approximation of elliptic partial differential equations with random coefficients. Such equations arise, for example, in uncertainty quantification in subsurface flow modelling. Models for random coefficients frequently used in these applications, such as log-normal random fields with exponential covariance, have only very limited spatial regularity, and lead to var...
متن کاملComparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics
Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011